

Reg. No. : ARPS 371004

Name: Rajani-k

II Semester M.Sc. Degree Examination, May 2009 STATISTICS

Paper – 2.1: Probability Theory – II

Time: 3 Hours Max. Marks: 70

Instructions: 1) Answer any five questions without omitting any Unit.
2) All questions carry equal marks.

UNIT - I

- 1. a) State and prove the basic inequality and hence deduce the Markov inequality.
 - b) When do you say
 - i) Events of a class are mutually independent
 - ii) Classes are independent
 - iii) Random variables are independent.
 - c) If X and Y are two independent random variables prove that f (x) and g(y) are also independent random variables where f and g are continuous functions of X and Y respectively. (7+3+4)
- 2. a) Define a Martingle. Let X be any r. v whose expectation exists and $\{Y_n\}$ be an arbitrary sequence. Prove that $Z_n = E[X \mid Y_1 \mid Y_2 \mid \mid Y_n]$ is a martingle.
 - b) State and prove Liapunov's inequality. (7+7)

UNIT - II

- 3. a) Define characteristic function of a random variable. If ϕ is the characteristic function of a random variable prove that
 - i) ϕ is continuous and the first time of (X) and (X) and world
 - ii) $|\phi(\vee)| \le \phi(0) = F(+\infty) F(-\infty)$
 - iii) $\overline{\phi}$ is the characteristic function of -X. Further ϕ is real iff X is symmetric about the origin.
 - b) State and prove the uniqueness theorem of characteristic functions. (7+7)

4. If v_r , the r^{th} absolute moment of F(x) is finite prove that characteristic function is differentiable r times and $\phi^{(r)}(v) = \int (ix)^r e^{ivx} dF(x)$. Also prove the converse namely if $\phi^{(r)}(0)$ exists and is finite.

 $v_{r'} < \infty$ for r' < r if r is odd and for r' < r if r is even.

14

UNIT - III

- 5. a) Define: i) Convergence in rth mean
 - ii) Convergence in probability.
 - b) Show that $X_n \xrightarrow{r} X \Rightarrow X_n \xrightarrow{p} X$. When does the converse hold if ever it holds?
 - c) Prove that $X_n \xrightarrow{r} X \Rightarrow E |X_n|^r \to E |X|^r$. (3+7+4)
- 6. a) Define convergence is distribution for a sequence of random variables.

If $X_n \xrightarrow{L} X$ and $Y_n \xrightarrow{L} C$ prove that

i)
$$X_n + Y_n \xrightarrow{L} X + C$$

- ii) $X_n Y_n \xrightarrow{L} C X$
- b) State and prove the Helly-Bray Theorem.

(7+7)

UNIT - IV

7. a) Let $\{X_n\}$ be a sequence of iid random variables and be $Y_n = X_n$ if $|X_n| \le n$. = 0 otherwise

Show that $\{X_n\}$ and $\{Y_n\}$ are tail equivalent whenever $E\left|X_1\right|<\infty$.

b) If $\{X_n\}$ is a sequence of independent r.v's when do you say the SLLN holds. Also if $P[X_n = n^{\lambda}] = P[X_n = -n^{\lambda}] = \frac{1}{2}$, for what λ does the SLLN hold. (7+7)

b) state and prove the pargeoness theaten of characteristic (uneslops.

11:11

8. a) Prove the following result:

Let $\{X_i\}$ be a sequence of iid r.v's with common distribution function F. A necessary and sufficient condition for the existence of $\{\mu_n\}$ such that

$$\frac{S_n}{n} - \mu_n \xrightarrow{P} 0$$
 is that

Lim
$$n P[|X| > n] = \lim_{n \to \infty} n[1 - F(n) + F(-n)] = 0$$

If this condition is satisfied $\mu_n = \int_{-n}^{+n} x \, dF$

- b) Write explanatory notes on:
 - 1) Law of iterated logarithm.
 - 2) Any two application of convergence of random variables in statistics. (7+7)

- 9. State and prove the Lindeberg-Feller CLT and hence deduce the Lypounov and Lindeberg-Levy forms of CLT.
- 10. a) Define an infinite divisible distribution. If ϕ is an infinite divisible characteristic function prove that ϕ has no real zeros.
 - b) If $\phi(t)$, $t \in R$ is a characteristic function and $\alpha > 0$ show that $g(t) = e^{\alpha(\phi(t)-1)}$ is a characteristic function and is also infinite divisible. (7+7)

es later