Reg. No. :

M 13835

Name :

Third Semester M.Sc. Degree Examination, November 2007 STATISTICS Paper – 3.3 : Inference – II

Time : 3 Hours

Max. Marks: 70

Instructions : 1) Answer any 5 questions without omitting any Unit. 2) All questions carry equal marks.

UNIT – I

- 1. a) Define (i) Type I error and (ii) Type II error. Let X have the Bernoulli density with parameter θ . Based on 5 observations X_1, X_2, X_3, X_4 and X_5 , the critical region for the test $H_0: \theta = \frac{1}{2}$ against $H_1: \theta = \frac{3}{4}$ is given by $\frac{\Sigma X_1}{5} > 0.6$. Obtain the size and power of the test.
 - b) State Neyman-Pearson lemma for MP test. For MP, test, show that the power is larger than or equal to the size of the test.
- 2. a) Define monotone likelihood ratio (MLR) properly. Explain its role in testing problem.
 - b) Let X have the density $f(x; \theta, \lambda) = \frac{1}{\theta} e^{-\frac{1}{\theta}(x-\lambda)} x > \lambda$ Determine a UMP test of size α for testing $\lambda = \lambda_0$ against $H_1: \lambda \neq \lambda_0; \theta$ is unknown.

- 3. a) Define α -similar test. Explain its role in testing problem.
 - b) Explain UMP unbiased test. Let $X \sim N(\mu_1, \sigma^2)$ and $Y \sim N(\mu_2, \sigma^2)$. X and Y are independent. Obtain UMPU test of size α for $H_0: \mu_1 = \mu_2$ against $H_1: \mu_1 \neq \mu_2$.
- 4. a) Explain the concept of Neyman structure. Give an example to a test which has Neyman structure.
 - b) Distinguish between unbiased critical region of type A and type B. Examine the existence of type A, test for testing $H_0: \sigma = \sigma_0$ against $H_1: \sigma \neq \sigma_0$, when $X \sim N(\mu, \sigma^2)$.

UNIT – III

- 5. a) Define likelihood ratio test. Prove or disprove : Likelihood ratio test is consistent.
 - b) Obtain likelihood ratio test for testing $H_0: \mu = \mu_0$ against $H_1: \mu \neq \mu_0$, when $X \sim N(\mu, \sigma^2), \sigma^2$ is unknown. Show that the test is unbiased.
- 6. a) Let $X_1, X_2, ..., X_n$ be a random sample from a density $f(x; \theta) = \frac{1}{\theta} e^{-x/\theta} x > 0$, $\theta > 0$. Find the likelihood ratio test for testing $H_0: \theta \le \theta_0$ against $H_1: \theta > \theta_0$.
 - b) Stating the assumptions derive asymptotic distribution of likelihood ratio test statistic.

- 7. a) Explain sequential probability ratio test. Obtain SPRT for testing $H_0: \theta = 1$ against $H_1: \theta = 2$ where θ is the mean of Poisson distribution.
 - b) State and prove Wald's identity.
- 8. a) Define OC function and ASN function of SPRT. Find OC function for testing H_0 : $\mu = 10$ against H_1 : $\mu = 15$ when $\alpha = \beta = 0.1$, where μ is the mean of normal population.
 - b) Show that SPRT terminates with probability one.

UNIT - Valda States and a second seco

- 9. a) Explain the Chi-square test for goodness of fit. Describe its limitations.
 - b) Explain sign test. Obtain confidence interval for median difference based on sign test.
- 10. a) Define Mann-Whitney U-test statistic for two sample problem. Obtain the distribution of test statistic.
 - b) Define one sample Kolmogorov-Smirnov test statistic. How do you use this for the construction of confidence interval for distribution function ?