First Semester M.Sc. Degree Examination, November 2005 STATISTICS Paper 1.4 : Distribution Theory

Time: 3 Hours

Max. Marks: 60

Instructions : 1) Answer any five questions without omitting any Unit. 2) All questions carry equal marks.

UNIT – I

I. a) Define p.g.f. of a non-negative integer valued random variable. Let X_i, i = 1, 2, N be i.i.d r.v.'s with p.g.f. P (S), where N is also a r.v.

independent of X_i 's. Obtain the p.g.f. of $\sum_{i=1}^{N} X_i$.

- b) Define Generalised Power Series Distribution (GPSD). Hence deduce Logarithmic series distribution and obtain its mean and variance.
- II. a) Derive the moment generating function of hypergeometric distribution and state its properties.
 - b) If X_i , i = 1, 2, ... n be independently distributed with Poisson distribution

P (λ_i) and if $T = \sum_{i=1}^{N} X_i$, $\lambda = \sum_{i=1}^{N} \lambda_i$, show that T has the Poisson distribution P (λ) and the conditional distribution of X_1, X_2, \dots, X_{n-1} given T = t is a multinomial.

UNIT – II. state and state and state and state

III. a) For the logistic distribution with c.d.f. $F(x) = (1 + e^{-x})^{-1}$ and p.d.f f(x),

show that $x = \log \left[\frac{F(x)}{1 - F(x)}\right]$ and $f(x) = F(x) \left[1 - F(x)\right]$.

b) Let X and Y be independent r.v.'s with common p.d.f. $f(x) = \beta^{-\alpha} \alpha x^{\alpha-1}$ if $0 \le x \le \beta$ and = 0 otherwise; $\alpha \ge 1$. Let U = min (X, Y) and V = max (X, Y). Find the joint p.d.f. of U and V and the p.d.f. of U + V. Show that U/V and V are independent.

- IV. a) Derive compound exponential distribution and hence obtain the moments.
 - b) Define Weibull distribution. Explain how it can be derived by transformation from an exponential random variable. Derive the characteristic function of a Weibull distribution. Hence or otherwise determine the first four raw moments of this distribution.

UNIT – III

V. a) Show that for the Pearsonism distribution obtained from the equation

$$\frac{df(x)}{dx} = \frac{x f(x)}{b_0 + b_1 x + b_2 x^2}$$

the range is determined by the nature of the roots of the line quadratic equation $b_0 + b_1 x + b_2 x^2 = 0$. Under what conditions can this reduce to gamma distribution ?

- b) What are orthogonal polynomials ? Explain the method of fitting an orthogonal polynomial.
- VI. a) Explain the mathematical forms of Burr family of distributions and state all its properties.
 - b) Prove or disprove
 - i) Beta distribution, and
 - ii) Logistic distribution

are both members of Burr family of distribution.

- VII. a) State and prove Fisher-Cochran theorem.
 - b) Let $X_1, X_2, ..., X_n$ be a random sample of size n drawn from N (μ , σ^2). Let S², be the sample variance. Derive the distribution of S² and hence obtain the first four moments of S².

- VIII. a) Define non-central t statistic. Derive the probability distribution of this statistic.
 - b) Define non-central F distribution and explain an application of non-central F distribution in detail with an illustration.

UNIT – V

IX. a) Let X₁, X₂, ... X_n be a random sample of size n from a distribution,

 $f(x, \theta)$. Let $m_r = \frac{1}{n} \Sigma (x_i - \overline{x})^r$ be the rth sample moment about sample mean. Derive the large sample variance of m_r .

b) If $X_1, X_2, ..., X_n$ are i.i.d. random variables, show that $X_{(1)}$ is distributed as X_1 if and only if X_1 follows exponential law.

X. a) Derive the asymptotic distribution of sample median.

b) If X_{1; n}, ... X_{n:n} are the order statistics of a random sample of size n drawn from the standard exponential distribution and

 $\mu_{r:n}^{(k)} = E(X_{r:n}^k)$; $k = 0, 1, ...; 1 \le r \le n$, then establish

 $\mu_{1:n}^{(k)} = \frac{k}{n} \cdot \mu_{1:n}^{(k-1)}$; k = 1, 2,