

Reg. No.:....

Name:

II Semester M.A./M.Sc./M.Com. Degree (Reg./Sup./Imp.)
Examination, March 2013

STATISTICS

Paper - 2.3 : Design and Analysis of Experiments

Time: 3 Hours

Max. Marks: 70

Instructions: Answer any five questions without omitting any Unit.

All questions carry equal marks.

UNIT-I

- 1. a) Describe a Gauss-Markoft setup and give an illustration.
 - b) Define estimability of a linear parametric function.
 - c) State and prove a necessary and sufficient condition for the estimability of a linear parametric function, $\lambda'\theta$. (4+2+8)
- 2. a) Define the terms estimation space and error space.
 - b) Develop the procedure to test linear hypothesis based on a linear model, stating clearly the assumptions that are made. (6+8)

UNIT-II

- 3. a) Discuss the principles of experimentation pointing out their role in the design and analysis if experiments.
 - b) For a single factor ANOVA with a fixed linear model, establish the fundamental identity (in the usual notation) $SS_T = SS_{Treatment} + SS_E$. (7+7)
- 4. a) Define (i) Latin square and (ii) Orthogonal Latin square Develop the ANOVA for Latin square design.
 - b) In a RBD with 'k' treatments and 'r'. (r > k) replications, one observation is missing in the ith block. Derive expression for estimate of the missing observation and hence give a computational procedure for the analysis of the data. (7+7)

UNIT - III

- 5. a) Explain:
 - i) Factorial experiments
- ii) Main effects and

- iii) Interactions.
- b) What are the advantages and disadvantages of the factorial experiments?
- c) Explain the analysis of a 2³ factorial experiment using Yates method and carry out its ANOVA. (4+2+8)
- 6. a) What is meant by confounding? Explain the need for confounding is factorial experiments.
 - b) Construct a 2⁵ factorial design in blocks of 8 plots confounding ABC, ADE and BCDE. Give the analysis of such a design with r replications. (4+10)

UNIT-IV

- 7. a) Establish the following parametric relations (in the usual notation) of BIBD.
 - i) vr = bk

- ii) $\lambda (v 1) = r(k 1)$
- b) Carry out the intra-block analysis of a PBIBD, obtaining expressions for sum of squares and mean squares. (6+8)
- 8. a) Explain the situation in which you would recommend the use of split-plot design. Write down the ANOVA table for a split-plot design with 'm' main plot treatments and 'n' sub plot treatment with RBD layout for main plot treatments.
 - b) Show that the design obtained by taking blocks for treatments and treatment

for blocks in the RBD with parameters $b = \frac{r(v-k)}{2}$, k=2, r=v-1, $\lambda=1$, is a PBIBD. (10+4)

UNIT-V

- 9. a) With reference to a general block design, define
 - i) Connectedness and
- ii) Orthogonality.
- Establish a necessary and sufficient condition for a block design to be connected.
- c) Discuss the relevance of mixed plot analysis.

(4+6+4)

- a) Explain the analysis of covariance with reference to a RBD model with one concomitant variable.
 - b) Discuss the optimality criterion for experimental design.

(7+7)