Reg. No. : \qquad
Name : \qquad

I Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022
 (2019 Admission Onwards) CORE COURSE IN PHYSICS
 1B01 PHY: Mechanics - I

Time : 3 Hours

Max. Marks : 40

PART - A

All questions are compulsory, each question carries 1 mark.

1. What is moment of inertia? What is its unit?
2. State parallel axis theorem.
3. What is impact parameter in scattering problems ?
4. Express velocity and acceleration in plane polar coordinates.
5. What do you mean by a central force?
6. Give the relation between torque and angular momentum.

PART - B
Answer any 6, each question carries $\mathbf{2}$ marks.
7. Starting from Hooke's law, obtain the differential equation for simple harmonic motion for a block of mass M attached to one end of the horizontal spring with the other end of spring is fixed.
8. Define centre of mass. Give the expression for the centre of mass of a non-uniform mass distribution of density ρ.
9. If weight is defined as the true gravitational force acting on a body, what happens to the weight of a turtle when it is inside an elevator which moves with a downward acceleration equals g ? What happens to the reaction by the elevator in this case?
10. When do we call certain forces as conservative forces? What is being conserved when work is done by a conservative force ?
11. Finite angular rotation is not a vector whereas angular velocity is a vector. Justify this statement.
12. What is meant by constraints? What is the constraint in the Atwood's machine ?
13. What is the law of conservation of angular momentum ? A rolling cycle tyre remain vertical for some time whereas a cycle tyre placed vertically at rest falls immediately when released. Why?
14. Describe stability using potential energy curve.

PART - C

Answer any 4, each question carries 3 marks.

15. The potential energy function of an interaction is given as $U=x^{3}-3 x^{2}$. Find the points of equilibria. Find the point of stable equilibrium.
16. A mass m is attached to the end of a string of length R and whirled round in a vertical plane in the gravitational field of earth. Find the tension on the string and the tangential acceleration produced.
17. How do we apply Newtons laws of motion for a system of particles? Derive the relation between the rate of change of the momentum of the system and the net external force acting on the system.
18. Particle A of mass m has initial velocity v_{0}. After colliding with particle B of mass 2 m initially at rest, the particle follows the path as shown in Figure. Find θ.

19. Derive the accelerations of the masses M_{a} and M_{b} connected in an Atwood's machine with a massive pulley of mass M.
20. Describe how the Kater's pendulum allows to measure the value of g with great accuracy.

PART - D

Answer any 2, each question carries 5 marks.
21. Determine the position vector of the centre of mass of a right triangular sheet of mass M and base ' a ' and height ' b '.
22. State the work energy theorem. Show that the mechanical energy is conserved when a particle moves under a central force.
23. Derive an expression for the angular momentum of a body that is undergoing both translation and rotation in the x - y plane. (The rotation axis remains parallel to the z axis throughout the motion.)
24. What is centre of percussion? Show that the place of a doorstop fixed on a wall to stop the door from banging the wall while opening should be at a distance $\frac{2}{3} w$ from the hinges. (where ' w ' is the width of the door).

