K22U 3267

Reg. No. : $\qquad$
Name : $\qquad$

## I Semester B.Sc. Degree (CBCSS - Supplementary) Examination, November 2022 (2016-2018 Admissions) CORE COURSE IN PHYSICS 1B01 PHY: Physics Primers

Time : 3 Hours
Max. Marks : 40
Instruction : Write answers only in English.

## SECTION - A

(Answer all - Very short answer type - Each question carries one mark.)

1. Particles with integer spin are called $\qquad$
2. $\qquad$ is the weakest fundamental force.
3. The Laplacian operator $\nabla^{2}$ in Cartesian coordinates is $\qquad$
4. The velocity of longitudinal waves in gases depends on the elasticity and
$\qquad$ of gases.
SECTION - B
(Answer any seven - Short answer type - Each question carries two marks.)
5. Explain Hubble's law.
6. What are Higgs Bosons ?
7. Define gradient of a scalar. What is its geometrical meaning ?
8. Show the spherical coordinates $(r, \theta, \phi)$ of a point in a diagram.
9. State the fundamental theorem for divergence of a vector function.
10. What is meant by a conservative force ?
11. State Fourier's theorem.
12. What is a compound pendulum ? Give the equation for its angular frequency.
13. What is meant by simple harmonic motion ? Give its differential equation.
14. For small amplitude vibrations, what is the shape of the potential energy curve of a diatomic molecule ? Write down the expression for the frequency of such oscillations.

## SECTION - C

(Answer any four - Short essay/problem type - Each question carries three marks.)
15. Give any three characteristics for each of the following basic forces :
a) Gravitational force and
b) Weak force.
16. Prove the fundamental theorem for gradients using the function $T=x^{3} y$ by integrating $\nabla \mathrm{T}$ along a straight line between $(1,3)$ and $(3,3)$.
17. Calculate the divergence of the vector function $A=3 x^{2} y \hat{i}+x^{3} \hat{j}+x z \hat{k}$ at $(1,-1,3)$.
18. Write down the expression for elementary volume in cylindrical coordinates and integrate it to obtain the volume of a cylinder of length $L$ and radius $R$.
19. A 2 kg mass hangs from a spring. A 0.3 kg body hung below the mass stretches the spring 2 cm farther. If 0.3 kg body is removed and the mass is set into oscillation, find the period of motion.
20. If in air a plane wave of frequency 256 Hz and amplitude 0.001 mm is produced. Calculate the radiated energy per unit volume and the energy current. (Velocity of sound is $332 \mathrm{~m} / \mathrm{s}$ and density of air is $1.29 \mathrm{~kg} / \mathrm{m}^{3}$ )

## SECTION - D

(Answer any two - Long essay type - Each question carries five marks.)
21. a) Explain Planck's hypothesis of quantum.
b) Give the contributions of the following Indian scientist to the Physics - SN Bose, MN Saha and CV Raman.
22. What are cylindrical polar coordinates ? Discuss the unit vectors, elementary lengths, elementary area and elementary volume.
23. Discuss the propagation of longitudinal waves in rods and derive at an expression for its velocity.
24. Derive an expression for the kinetic energy, potential energy and total energy of a harmonic oscillator and represent these variations with displacement in a plot.

