M 14393

Reg. No.:

Name:

IV Semester M.Sc. Degree Examination, April 2008 PHYSICS PH-401 : Statistical Mechanics (2006 Admn.)

Time: 3 Hours

Max. Marks: 50

 $(2 \times 10 = 20)$

10

10

- Instructions :1) Contains three Sections, A, B and C.
 - 2) Section A contains 4 essay type questions, candidate has to answer any two questions.
 - 3) Section-B contains 8 questions, can answer 5 questions.
 - 4) Section -C contains 5 questions, can answer 3 questions.

SECTION – A

Essay questions. Answer any two questions :

- 1. What is Gibb's distribution ? Using this distribution obtain an expression for generalized equipartition of energies and virial theorem.
- What is Bose-Einstein condensation ? Estimate the critical temperature for Bose-Einstein condensation and discuss the behaviour of specific heat of a Bose-Einstein gas around the critical temperature.
- 3. What is Fermi gas ? Deduce an expression for the energy of a Fermi gas at absolute zero. Comment on its physical significance.
- 4. Define grand canonical partition function. How can you obtain various thermodynamic quantities from it ? Discuss the density fluctuations in grand canonical ensemble.
 10

SECTION – B

Answer any five questions :(5×3=15)5. Discuss the concept of thermodynamic probability and thermal equilibrium.36. Give brief descriptions of different types of phase space and ensembles.3

P.T.O.

M 14393

1

7 Deduce the Se

,	equilibrium at a temperature T.	3
8.	. Calculate the mean square fluctuation in the number of photons in an enclosure of volume V at a temperature T.	3
9.	. Define density matrix for various thermodynamic parameters from the density operator.	3
10.	Explain the Planck's theory of black body radiation.	3
11.	Obtain an expression for specific heat of metals at low temperatures and comment on its significance.	3
12.	Explain how ising model can simulate the lattice gas.	2

Answer any three questions :

- 13. Calculate the translational partition function and different thermodynamical quantities for molecular oxygen gas at a temperature of 1500K and a pressure of one atmosphere. The molecular weight of oxygen is 32.
- 14. Show that the fluctuations in energy and in temperature are given by

$$\overline{(\delta E)^2} = KT^2Cv \text{ and } \overline{(\delta T)^2} = \frac{KT^2}{Cv}$$

- 15. Treating liquid 2He4-I as an ideal Bose-Einstein gas find the critical temperature T_C at which there is a transition of liquid He-I to liquid He-II, the molar volume of liquid He at T_c is 27.4×10^{-6} m³ and mass of ₂He⁴ is 6.65×10^{-27} kg.
- 16. Calculate the Fermi energy at 0K of sodium assuming that it has one free-electron per atom and also determine the internal energy of the electron gas per unit volume. The density and atomic weight of sodium are 0.97 gm/cm³ and 23 respectively.
- 17. Calculate the entent of energy range between F(E) = 0.9 and F(E) = 0.1 of the Fermi-Dirac distributions at a temperature of 200 k and express it as a function of E_F which is 3eV.

 $(3 \times 5 = 15)$

5

5

5

5

5