

K17P 0613

Max. Marks : 60

Reg. No. : BG PSPH 1609 .

Name: Sieye.k

Second Semester M.Sc. Degree (Regular/Supplementary/ Improvement) Examination, March 2017 (2014 Admission Onwards) PHYSICS PHY 2C09 : Spectroscopy

Time: 3 Hours

SECTION - A

Answer both questions (Either a or b) :

1. a) Discuss the rotational spectra of rigid diatomic molecules. Also estimate the relative intensities of the spectral lines.

OR

- b) Explain band origin and band head in relation to the rotational fine structure of electronic vibration spectra.
- 2. a) Give the classical and quantum theory of Raman effect. Show that the Stokes lines are more intense than that of Antistokes lines.

OR

b) What are hot bands in a vibrating diatomic molecule. Draw a diagram showing (2×12=24) the energy levels of vibrating diatomic molecule.

SECTION-B

Answer any four (One mark for part a, 3 marks for part b, 5 marks for part c) :

- 3. a) Name the different series in alkali spectra.
 - b) Explain Stark effect.
 - c) Calculate the Zeeman shift observed in the normal Zeeman effect when a spectral line of wavelength 5000 Å is subjected to the magnetic field of 1.4 Wb/m² taking $e/m = 1.76 \times 10^{11} \text{ Ckg}^{-1}$.

P.T.O.

K17P 0613

- 4. ,a) Define spherical top molecules.
 - b) Molecules having permanent dipole moment are microwave active and those not having permanent dipole moment are microwave inactive. Comment.
 - c) Rotational and centrifugal distortion constants of HCl molecule are 10.593 cm^{-1} and $5.3 \times 10^{-4} \text{ cm}^{-1}$ respectively. Estimate the vibrational frequency and force constant of the molecule.
- 5. a) What is pre-dissociation ?
 - b) Explain Fortrat parabola.
 - c) The spectroscopic bond dissociation energy of ³⁵CIO²⁶ radical is 1.6 eV. Calculate the equilibrium bond dissociation energy of CIO, if the fundamental vibrational frequency is 780 cm⁻¹.
- 6. a) Give the principle of ESR.
 - b) What is Fermi contact interaction and hyperfine structure ?
 - c) A molecule AB_2 has the following \mathbb{R} and Raman spectra. Discuss the molecular structure and assign the observed lines to molecular vibrations.

Frequency (cm ⁻¹)	IR	Raman
3750	Very strong	
3650	Strong	Strong, polarized
1595	Very strong	

- 7. a) Give the principle of NMR.
 - b) Explain Larmour precession.
 - c) A system of protons at a temperature of 25°C is placed in a magnetic field of 2 T. What is the ratio of number of proton spins in the lower state to the number in the upper state.
- 8. a) What is Mössbauer spectroscopy ?
- / b) Explain isomer shift in Mössbauer's experiment.
 - c) Calculate the Doppler velocity corresponding to the natural line width of the γ -ray emission from 140.4 keV excited state of ⁵⁷Fe nucleus having a half life of 9.8 × 10⁻⁸ s. (4×9=36)