M 24417
Reg. No. : $\qquad$
Name : $\qquad$

# I Semester M.A./M.Sc./M.Com./ M.Sc. Comp. Science Degree (Reg./Sup./Imp.) Examination, November 2013 PHYSICS 

PH-101: Mathematical Physics - 1
Time: 3 Hours

## SECTION-A

Answer any two questions. Each question carries ten marks.

1. How are cylindrical and spherical polar co-ordinates related to the Cartesian co-ordinates ? Write down the Laplacian operator in Cartesian co-ordinate and convert the expression to the cylindrical co-ordinates.
2. Define Legendre Polynomials. State and prove orthogonal properties of Legendre's polynomials.
3. State and prove Cauchy Residue theorem.
4. What do you mean by diagonalization of matrices? Explain the practical method of diagonalization. Diagonalize the following matrix:
$\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$
SECTION - B

Answer any five questions. Each question carries three marks.
5. If $u=2 x+3, v=y-4, w=z+2$, show that $u, v, w$ are orthogonal find $d s^{2}$.
6. If $A$ and $B$ are symmetric matrices, then show that $A B$ is symmetric if and only if $A$ and $B$ commute.
7. What is a tensor? Explain what is meant by the rank of a tensor.
8. Find the poles and residues at the poles of the function $\frac{z+1}{z^{2}-2 z}$.

## M 24417

## 

9. To show that $\beta(m, n)=\frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.
10. Write the Hermite polynomial and determine $\mathrm{H}_{5}(\mathrm{x})$.
11. Show that the given matrix is orthogonal $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
12. Using Rodrigue's formula, prove that $\int_{-1}^{+1} P_{n}(x) d x=0(n \neq 0)$.
SECTION-C

Answer any three questions. Each question carries five marks.
13. Prove that $J \frac{-1}{2}(x)=\sqrt{\left(\frac{2}{\pi x}\right) \cos x}$.
14. Define metric tensor and determine metric tensor in Cylindrical coordinates.
15. Find the residue of $\frac{z^{4}}{(z-1)^{4}(z-2)(z-3)}$ at $z=1$.
16. What are Legendre Polynomials ? Show that $P_{n}(-x)=(-1)^{n} P_{n}(x)$.
17. For Bessel function $J_{n}(x)$, prove that $J_{-n}(x)=(-1)^{n} J_{n}(x)$.

