M 16905
Reg. No.: \qquad
Name: \qquad

First Semester M.Sc. Degree Examination, November 2009
 PHYSICS (2009 Admission) PH-101: Mathematical Physics - I

Time: 3 Hours
Max. Marks: 50
SECTION - A

Answer any two questions. Each question carries ten marks.

1. Show that eigen values of Hermitian matrices are real and orthogonal to each other
2. State and prove Cauchy's integral formula.
3. Show that $\cos x=J_{0}(x)+2 \sum_{n=1}(-1)^{n} J_{2 n}(x)$.
4. Obtain the simple form of the second solution of a differential equation if one solution is known.
SECTION - B

Answer any five questions. Each question carries three marks.
5. Write down the transformation equations from rectangular co-ordinates to spherical polar and cylindrical co-ordinate systems.
6. If A and B are Hermitian matrices, show that $\mathrm{AB}+\mathrm{BA}$ is also Hermitian.
7. What is contraction as applied to tensors ?
8. What is levi-civita symbol?
9. State and prove residue theorem.
10. Explain the method of Frobenius to obtain series solution around a regular singular point.
11. Derive a relation between gamma function and beta function.
12. What is generating function for Hermite polynomials? Fromit derive $\mathrm{H}_{2}(\mathrm{x})$ and $\mathrm{H}_{3}(\mathrm{x})$.

SECTION - C

Answer any three questions. Each question carries 5 marks.
13. Transform $\mathrm{ds}^{2}=\mathrm{dx} \mathrm{x}^{2}+\mathrm{dy}^{2}+\mathrm{dz} z^{2}$ into spherical polar co-ordinates,
14. Show that velocity and acceleration are contravariant tensors.
15. Find the residue of $f(z)=z e^{z} /(z-a)^{3}$ at its pole.
16. Obtain series solution by the method of Frobeneus's to solve the second order differential equation.
17. Prove that recurrence relation.

$$
X P_{n}^{\prime}(x)-P_{n-1}^{\prime}(x)=n P_{n}(x)
$$

