Reg. No. : \qquad
Name: \qquad
I Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. - Regular/Supplementary/ Improvement) Examination, November 2022
(2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT - ST : Mathematics for Statistics - I

Time : 3 Hours

Max. Marks : 40

PART - A

Answer any four questions from among the questions 1 to 5 . Each question carries one mark.

1. Find the $\mathrm{n}^{\text {th }}$ derivative of $(a x+b)^{m}$.
2. State Rolle's theorem.
3. Evaluate $\lim _{x \rightarrow 0} \frac{\log x}{\cot x}$.
4. Define rank of a matrix.
5. Find parametric equation for the line through $P(-3,2,-3)$ and $Q(1,-1,4)$.

PART - B
Answer any seven questions from among the questions 6 to 15. Each question carries 2 marks.
6. If $y=\sin (\sin x)$, prove that $\frac{d^{2} y}{d x^{2}}+\tan x \frac{d y}{d x}+y \cos ^{2} x=0$.
7. If $y=(2-3 x)^{10}$, find y_{9}.
8. Verify Lagrange's mean value theorem for the function $f(x)=(x-1)(x-2)(x-3)$ in $(0,4)$.
9. Using Maclaurin's series, expand $\sin x$.
10. Determine the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.
11. Solve the equations $3 x+y+2 z=3,2 x-3 y-z=-3, x+2 y+z=4$ by determinants.
12. Show that the transformation $\mathrm{y}_{1}=2 \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}, \mathrm{y}_{2}=\mathrm{x}_{1}+\mathrm{x}_{2}+2 \mathrm{x}_{3}, \mathrm{y}_{3}=\mathrm{x}_{1}-2 \mathrm{x}_{3}$ is regular.
13. Find an equation for the plane through $\mathrm{A}(0,0,1), \mathrm{B}(2,0,0)$ and $\mathrm{C}(0,3,0)$.
14. A glider is soaring upward along the helix $r(t)=(\cos t) i+(\sin t) j+t k$. How long is the glider's path from $t=0$ to $t=2 \pi$?
15. Find T and N for the circular motion $r(t)=(\cos 2 t) i+(\sin 2 t) j$.
PART - C

Answer any four questions from among the questions 16 to 22. Each question carries three marks.
16. If $y=x \log \frac{x-1}{x+1}$, show that $y_{n}=(-1)^{n-2}(n-2)!\left[\frac{x-n}{(x-1)^{n}}-\frac{x+n}{(x+1)^{n}}\right]$.
17. Find the $n^{\text {th }}$ derivative of $\frac{1}{x^{2}-6 x+8}$.
18. Verify Cauchy's mean value theorem for the functions e^{x} and e^{-x} in the interval ($a, ~ b$).
19. Expand $\log _{e} x$ in powers of $(x-1)$ and hence evaluate $\log _{e} 1.1$ correct to 4 decimal places.
20. Evaluate $\lim _{\theta \rightarrow 0} \frac{\theta-\sin \theta}{\sin \theta(1-\cos \theta)}$.

22. Test for consistency and solve $5 x+3 y+7 z=4,3 x+26 y+2 z=9$, $7 x+2 y+10 z=5$.

PART-D

Answer any two questions from among the questions 23 to 26. Each question carries five marks.
23. If $y=\left(\sin ^{-1} x\right)^{2}$, show that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$.

Hence find $\left(y_{n}\right)_{0}$.
24. Prove that $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$, where $0<a<b<1$. Hence deduce that $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6}$.
25. Solve the equations $x_{1}-x_{2}+x_{3}+x_{4}=2, x_{1}+x_{2}-x_{3}+x_{4}=-4, x_{1}+x_{2}+x_{3}-x_{4}=4$, $x_{1}+x_{2}+x_{3}+x_{4}=0$ by finding inverse by elementary row operations.
26. a) Find the derivative of $f(x, y, z)=x^{3}-x y^{2}-z$ at $P_{0}(1,1,0)$ in the direction of $v=2 i-3 j+6 k$.
b) In what directions does f change most rapidly at P_{0} and what are the rates of change in these directions ?

