Reg. No. : \qquad
Name: \qquad

I Semester B.Sc. Degree (CBCSS - OBE - Regular/Supplementary/ Improvement) Examination, November 2022 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C 01 MAT-CH : Mathematics for Chemistry - I

Time : 3 Hours
Max. Marks : 40

SECTION - A

Questions 1-5, answer any four questions. Each question carries one mark.

1. If $x=\cos t, y=\sin t$. Find $\frac{d^{2} y}{d t^{2}}$.
2. State Rolle's Theorem.
3. Find the rank of the matrix $\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right)$.
4. Give an example of an elementary operation.
5. Show that A^{\prime} is orthogonal if A is orthogonal.
SECTION-B

Questions 6-15, answer any seven questions. Each question carries two marks.
6. Find the third derivative of $\frac{x}{(x-1)(2 x+3)}$.
7. Given that $\mathrm{y}=2 \sin \mathrm{x}+3 \cos \mathrm{x}$. Prove that $\mathrm{y}_{2}-\mathrm{y}=0$.
8. Show that $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)=0$.
9. Prove that $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots$.
10. Show that the vectors $(1,1),(1,2)$ are linearly independent.
11. Find the normal form of the matrix $\left(\begin{array}{cc}1 & -2 \\ 2 & 1\end{array}\right)$.
12. Using Gauss-Jordan method, find the inverse of the matrix $\left(\begin{array}{cc}1 & 0 \\ -8 & 7\end{array}\right)$.
13. Write the curve $y=3 x^{4}$ in to the linear form.
14. Define the term Scatter diagram.
15. Explain briefly on the method of least squares to fit the straight line $y=a+b x$.

SECTION - C

Questions 16-22, answer any four questions. Each question carries three marks.
16. If $x=2 \cos t-\cos 2 t, y=2 \sin t-\sin 2 t$, find the value of $d^{2} y / d x^{2}$ when $t=\pi / 2$.
17. If $y=\frac{a x+b}{x+d}$, show that $\frac{y_{1} y_{3}}{y_{2}^{2}}=\frac{3}{2}$.
18. Verify Cauchy's mean value theorem for the function e^{-x} and e^{x} in the interval (a, b).
19. Prove that $x \operatorname{cosec} x=1+\frac{x^{2}}{6}+\frac{7 x^{4}}{360}+\ldots$
20. Using the partition method, find the inverse of $\left(\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right)$.
21. Solve the system of equations $x+y+z=3, x-y+z=1,-x+y+z=1$ using Crammer's rule.
22. If P is the pull required to lift a load W by means of a pully block, find a linear law of the form $\mathrm{P}=\mathrm{mW}+\mathrm{c}$ connecting P and W , using the following data.

$\mathrm{P}=12$	$\mathrm{~W}=50$
15	70
21	100
25	120

SECTION - D

Questions 23-26, answer any two questions. Each question carries five marks.
23. If $y=e^{m \cos ^{-1} x}$, prove that $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-\left(n^{2}+m^{2}\right) y_{n}=0$.
24. Find the value of a and b such that $\lim _{x \rightarrow 0} \frac{x(a+b \cos x)-e \sin x}{x^{5}}=1$.
25. Test for consistency of the system of linear equations and solve them if consistent :
$x-2 y+3 t=2,2 x+y+z+t=-4,4 x-3 y+z+7 t=8$.
26. Fit a parabola of the following data:

x	y
0	1
1	1.8
2	1.3
3	2.5
4	6.3

